Interventions

Articles testing the applied science and implementation of mindfulness-based interventions

ASSOCIATIONS

Articles examining the correlates and mechanisms of mindfulness

Harrison, N. R., Clark, D. P. (2016). The observing facet of trait mindfulness predicts frequency of aesthetic experiences evoked by the arts. Mindfulness. [link]

METHODS

Articles developing empirical procedures to advance the measurement and methodology of mindfulness

Contents
65 New Cites p1
18 Interventions
29 Associations
5 Methods
9 Reviews
4 Trials

Highlights p5

Editor-in-Chief
David S. Black, PhD, MPH

Highlights by
Seth Segall, PhD

Subscribe at:
goAMRA.org/publications

American Mindfulness Research Association

JUN 2016

Vol 7 - No 6

Mindfulness Research Monthly
Providing monthly research updates on mindfulness
www.goAMRA.org

Reviews
Articles reviewing content areas of mindfulness or conducting meta-analyses of published research

Sharp, J. E., Niemiec, R. M., Lawrence, C. (2016). Using mindfulness-based strengths practices with newly funded by the National Institutes of Health (MAY 2016)

California Pacific Medical Center (A. Pressman, PI). Mindfulness and migraine: A RCT. NIH/NCCIH project #1R01AT009081-01. [link]

Idaho State University (E. Rasmussen, PI). Food insecurity, obesity, and impulsive food choice. NIH/NCCIH project #1R15AT009348-01. [link]

Massachusetts General Hospital (G. Desbordes, PI). MBCT effects on brain mechanisms of interoceptive awareness and rumination in MDD. NIH/NCCIH project #5K01AT008225-03. [link]

University of Rochester (J. Moynihan, PI). MBSR for family caregivers of dementia patients. NIH/NIA project #1R01AG052495-01. [link]
One advantage of being mindful is that it allows one to respond to situations with equanimity rather than reacting emotionally in a “knee-jerk” fashion. How does mindfulness help us to do this? According to one theory, mindfulness helps to extinguish our negative emotional reactions. It does this by increasing our exposure to the stimuli that provoke these reactions while helping us to maintain an open, nonjudgmental stance.

Uusberg et al. [Biological Psychology] tested this theory using an electroencephalogram (EEG) to measure the effects of repeatedly viewing negative and neutral images under both mindful and control conditions. They hypothesized that repeated viewing of emotionally-charged images while maintaining mindful awareness would cause a greater reduction in emotional reactions to the images than viewing them without mindfulness.

The researchers recruited 37 meditation-naïve volunteers (84% female, average age=27). The participants were shown a series of 30 neutral and 30 negative images while an EEG recorded their late positive potentials (LPPs) in response to those images. LPPs are electrical brain waves that occur 260-1500 milliseconds after viewing a stimulus. They reflect ongoing emotional processing, with larger LPPs reflecting greater degrees of emotional processing. The mean difference in LPP amplitude between negative and neutral images served as a measure of emotional reactivity.

The negative stimuli featured images such as car accidents and brutal attacks, while the neutral stimuli were images of everyday scenes and objects such as hairdryers. Participants viewed subsets of these neutral and negative images under three different conditions: an “attentiveness” condition in which they focused on the visual details of the images; an open-monitoring “mindfulness” condition in which they viewed the images while also attending nonjudgmentally to thoughts, feelings, and bodily sensations; and a “distraction” condition in which they viewed the images while mentally counting backwards. There was a brief period of instruction prior to each of these viewing conditions. Each image in a subset was presented three times during a viewing condition. Afterward, participants were re-exposed to all of the previously seen images and rated them for valence and arousal. Participants also completed measures of trait (the Mindful Attention Awareness Scale) and state (the Toronto Mindfulness Scale) mindfulness immediately after the experiment.

In general, negative images produced significantly larger LPPs than neutral images ($\eta^2_p=.75$). Viewing while “distracted” yielded significantly smaller LPPs than viewing while “attentive” or “mindful” ($\eta^2_p=.14$), and LPP magnitude significantly decreased with repeated presentations ($\eta^2_p=.17$). During the “mindfulness” condition, LPPs were significantly larger for negative than for neutral images for the first two presentations, but this difference disappeared by the third presentation. This finding is in line with the hypothesis that mindfulness successfully decreases emotional reactivity to the negative images over time. There was no similar pattern of decrease in the difference between negative and neutral LPPs under either the “attentive” or “distracted” viewing conditions.

While state mindfulness wasn’t associated with decreased negative image LPPs under the “mindful” viewing condition, one of its components—“decentering”—was significantly associated with increased neutral image LPPs under same condition. This finding is unexpected and open to a variety of interpretations. Trait mindfulness, on the other hand, was significantly associated with both decreased negative image LPPs and increased neutral image LPPs during the final re-exposure trial. This suggests that trait mindfulness helps maintain reduced emotional reactivity under later non-mindful viewing conditions.
These results support the theory that mindful viewing enhances the emotional processing of novel stimuli while decreasing emotional reactivity to later repetitions of those stimuli. This decreased reactivity persisted on final re-exposure, especially for participants reporting higher levels of trait mindfulness. “Mindful” viewing also attenuated LLP components beginning less than 500 milliseconds after stimulus onset, whereas “attentive” and “distracted” viewing did not. These “early” LLP components reflect automatic emotional reactivity rather than deliberate cognitive strategies. In other words, mindfulness has a unique impact on emotional processes that are not under conscious control. The interpretation of study results is limited by the brief nature of its “mindfulness” induction.

Every year nearly 250,000 American women are diagnosed with breast cancer. Diagnosis and treatment can be frightening and arduous, and the interval following active treatment is often fraught with anxiety and uncertainty. Prior studies show that breast cancer survivors can benefit from psychological interventions, but little is known about which interventions yield the best outcomes.

Carlson et al. [Psycho-Oncology] conducted a randomized, controlled trial comparing two supported programs, Mindfulness-Based Cancer Recovery (MBCR) and supportive expressive group therapy (SET), in reducing stress and improving the quality of life of distressed breast cancer survivors.

The researchers randomly assigned 271 distressed Canadian breast cancer survivors (average age = 55) to either MBCR or SET. MBCR is an 8-week group mindfulness-based intervention modeled after Mindfulness-Based Stress Reduction. SET is a 12-week group treatment developed at Stanford University that aims to mobilize social support, facilitate emotional openness and expressiveness, and strengthen coping skills.

All participating survivors had been diagnosed with Stage I-III breast cancer, completed surgical, chemotherapy, and/or radiation treatment, and scored ≥ 4 on a 10-point distress scale. Participants completed self-report measures of mood, stress, quality-of-life, perceived social support, spiritual well-being and post-traumatic growth before treatment, immediately after treatment, and at 6 month and 12 month follow-up. Dropout rates during treatment were relatively high (MBCR=32%, SET=28%), with additional attrition (MBCR=28%, SET=23%) prior to post-treatment and follow-up assessments. The results included data from all the participants who enrolled in the trial.

Both groups improved on all of the mood subscales, but the improvement was significantly greater for MBCR participants, especially on measures of fatigue, anxiety, and confusion (average Cohen’s d = 0.37). Both groups also significantly improved on most of the stress subscales, but the MBCR group improved more (average d = 0.29). MBCR participants also showed greater improvements on quality-of-life subscales (average d = 0.21), social support subscales (average d = 0.20), spiritual well-being subscales (average d = .23) and post-traumatic growth subscales (average d = 0.19).

These improvements and the overall patterns of MBCR superiority were largely maintained on follow-up with some exceptions: there were slight increases in depression and decreases in affectionate support for both groups, a lessening in the size of group differences in some somatic complaints, and a loss of significance for some quality-of-life measures. The difference between groups for posttraumatic growth continued to widen on follow-up, with MBCR participants continuing to improve at a greater rate.

Among breast cancer survivors, MBCR performed better than SET on a broad variety of psychosocial measures, both initially and at one-year follow-up. The study is limited by its high attrition rates and the large number of multiple comparison tests performed.
MYmind advanced teacher training
Mindfulness training for Youth with ADHD, Youth with ASD and parallel Mindful Parenting.

MYmind training is a mindfulness-based 9 session parent and child training program that improves focus and concentration, and decreases impulsivity, hyperactivity, and aggression in youth (9-18 years) with Attention Deficit Hyperactivity Disorder (ADHD). MYmind has recently been extended to address stress, anxiety and depression and appears to have a positive effect on social communication in children and youth with Autism Spectrum Disorders (ASD). The parallel mindful parenting training helps parents to deal with the problems of their children in a mindful, non-reactive way. In addition, parents learn how they can support and reward their child’s mindfulness training. This 5½-day MYmind advanced teacher training is meant for mental health professionals with a background in mindfulness training and meditation, who want to use MYmind with their clients. The training will be given in English. Participants will receive training in both the child and the parent program. MYmind is provided by two therapists, one for the child group and one for the parallel parent group. As such, it is advisable to participate in the current training with a colleague, although not required. By means of meditation practices, in which participants place themselves in the role of youth and of parents, the typical MYmind exercises are experienced, and subsequently practiced in the role of the instructor. Video-examples will be shown. Although this is primarily a clinical training, some research elements will be included as well. The effects of MYmind for children with ADHD and ASD and their parents will be discussed.

Date:
September 6th – September 10th 2016, 09.30 – 16.30 (Thursday, silence day, up to 8 pm).

Location
UvA minds You
Plantage Muidergracht 14, 1018 TV Amsterdam

Trainers
Prof. Dr. Susan Bögels is a professor in Developmental Psychopathology at the University of Amsterdam, as well as a licensed clinical psychologist and cognitive behavior and child and family therapist. Her research focuses on the intergenerational transmission of psychopathology, through parent-child and family interactions, with a specific focus on the father, on the role of attentional processes in psychopathology, and on child and family interventions, including mindfulness. She is also the director of the academic center for the treatment of parents and children, UvA minds, in which evidence-based cognitive-behavioral and mindfulness interventions are offered to families. She is a practicing mindfulness trainer, specialized in mindfulness for children and their parents in a mental health context. She is the author of the book Mindful Parenting: A Guide for Mental Health Practitioners (2013) together with Kathleen Restifo, and has published many articles in the field of mindfulness and youth psychopathology. She is a member of the workgroup on Anxiety, Obsessive–Compulsive Spectrum, Post Traumatic, and Dissociative Disorders of the DSM-5.

Joke Hellemans is a licensed clinical psychologist/psychotherapist and mindfulness teacher, trained at the Center for Mindfulness of the University of Massachusetts Medical School (USA) founded by Jon Kabat-Zinn. She will lead the silence half-day.

Costs
Early registration (two months prior to the training) €1200,00
Normal registration €1500,00

www.uvamindsyou.nl